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PROPAGATION OF ELASTIC WAVES THROUGH MEDIA WITH THIN CRACK-LIKE INCLUSIONS* 

S.K. KANAUN and V.M. LEVIN 

Wave propagation in elastic homogeneous media containing a random number 
of thin inclusions is studied. The material of the inclusions is assumed 
to be elastic or viscoelastic and appreciably softer than the medium 
surrounding them. Only the principal terms of the expansion of elastic 
fields in terms of the small parameters of the problem are considered, 
namely, the ratio of the characteristic linear dimensions of a typical 
inclusion and the ratio of the characteristic mdouli of elasticity of 
the inclusion and the medium. This makes it possible to replace every 
inclusion by an equivalent singuar model. In the case of statics, 
analogous models of thin inclusions were given in /l-3/. The model 
problem of long-wave scattering by a single thin ellipsoidal inclusion 
is solved explicitly, and the solution is then used to study a medium 
containing a random number of thin defects. The effective-field method 
/4, 5/ which takes into account multiple scattering of waves is used to 
obtain the averaged equation of motion of such a medium (the effective 
wave operator) in the long-wave approximation. The operator describes 
the wave propagation in a homogeneous medium with dispersion and 
attenuation. The velocities of propagation and the attenuation coefficients 
of various types of elastic waves propagating through materials with 
randomly oriented inclusions or cracks, and with a system of parallel 
cracks, are found. 

The static moduli of elasticity of media with cracks, and hence the 
velocities of propagation of long waves in such materials, were determined 
using the effective field method in /6-8/. Other method were used in 
/9-ll/to find the attenuation coefficients of elastic waves in a medium 
with cracks, in the Rayleigh approximation. In the case of a medium with 
cracks, the results of this paper agree with those obtained in the papers 
listed above. 

1. A model of a thin inclusion in an elastic medium. Let an unbounded homo- 
geneous elastic medium with the tensor of elastic moduli Cijkl and density p contain a region 
V with elastic characteristics C;jkl and density p'. We shall assume that one of the character- 
istic dimensions of this region, namely h, is small compared with the other two, and that the 
moduli of elasticity of the inclusion are appreciably smaller than those ofthe medium. We 
shall choose, at every point x of the middle surface 61 of the region V, a local coordinate 

system Y,, Y,, 6rs with.the axis y, directed along the normal n(x) to the surface 9. We denote 
by h (x) the transverse dimension of the region V along the y, axis. 
tensor C' can be represented in the form 

The function h(x) and 

h (5) = 611 (z)* Cijtl = %Cijkl (1.1) 

where 6, and 6, are small dimensionless parameters, Z(z) is of the order of the largest 
linear dimension of the region V, and the components of the tensor C"are of the same order 
as the moduli of elasticity of the basic medium. 

Below, we shall assume that h(x) is a fairly smooth function satisfying the condition 
Iah 141 everywhere on Q, with the exception of a small neighbourhood of the contour r 
of the boundary Q. Here the symbol a denotes the grad operation along the surface 8 

a, = VI - ni (2) nj (x)V,, vi = a/ax,, x E 8 (1.2) 
Let us consider the problem of the propagation of elastic stationary waves of frequency 

0 through a medium with a thin defect. Using the smallness of the transverse dimension of 
this defect, we can replace the initial problem by a boundary value problem for a medium with 
the boundary conditions at the surface a, which approximately models the presence of an 
inclusion. Such boundary conditions were formulated in /l, 2/ inthestaticcase (o = 0). In 
ndealingwiththeproblemofthe stationaryoscillationofamediumwitha thindefect, theseconditions 
canbegeneralizedinanaturalwasas follows. Ifwedenotetheamplitude valuesofthedisplacement 
vectorandstresstensorby n(z) and a(~), then for xE 51 we have 
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l”* (s)l = bi (2)~ lni (X)Ufj (X)1 = O%j (5) (2.3) 

nj(2)~ij(2)=~nj(~)C;jrm,(s)b,(z), ui(5)=h(s)pltii(2) (1.4) 

Here the square brackets denote the difference in the limit values of the function f(z) 
approaching B from the direction of the normal (f’) and from the opposite direction (f-): If] = 
f’ - f-v bi (2) is the unknown displacement jump vector on Q,p, = p' - p,E and 5 are the mean 
values of the displacements and stresses 

C(r) ='/z(u+(z) + u_(m)), Z(m)= '/z(u+((x) + a(2)) (1.5) 

We note that the quantity 0%~ (5) in (1.3), which can be regarded as the force of inertia, 
is proportional to the fluctuation in the density p1 of the material in the region occupied 
by the inclusion. Below, we shall assume that for small 6, the inertial term on the right- 
hand side of the second relation of (1.3) can be neglected (vi =O). Here the conditions (1.3) 
and (1.4) are essentially the same as those in /1,2/. 

We obtain the correct boundary value problem of the dynamic theory of elasticity for a 
medium with a thin inclusion, by adding to (1.3) and (1.4) the condition at infinity 

u (5) + u" (x) as Isl-t=J (1.6) 

where u" (5) is the "incident" field which would exist in the medium without an inhomogeneity, 
and the manner in which u(z) tends to u'(z) is determined by the well-known radiation 
conditions. 

It can be shown /3/ that the solution of the boundary value problem formulated here yields 
an asymptotic expression for the wave field outside the inclusion with an accuracy of up to 
terms of the order of the small parameters 6, and 6,, provided that 6,/6, = O(1). 

We shall seek the displacement field u(z), the deformation field s(z)and the stress field 

s (r outside the inclusion in the form of the following potentials: 

u (2) = u”(5) - Ul (x), ul(x)= a Vg(s - d)Cn(z') b(d)&’ (1.7) 

e(t) = e” (I) + el(4, ei(x)=SK(Z-_5))Cn(X')b(~)dn' 
P 

u (5) = 0” (2) + u1(5), u1 (z) = j M (x - 2’) n (2’) b (5’) dQ 

Here gik(z) is Green's tensor of the wave operator for the medium, satisfying the equation 

(Likgkj)(z) = --6 (*)6ijv ‘hk = vjc,jklvl f p~*‘%k (1.8) 

and the kernels of the potentials er(s) and al(z) are connected with the second derivatives 
of Green's tensor gik(z) by the relations 

KijkI tx) = - t?i)(k,l)(j tz) (W 

Mijkl (5) = CijmnKmnrr (5) Crrhl - CfjkIs (%I 

When the anisotropy of the medium is arbitrary, Green's tensor gik(5) can be represented 
in the form of the following series /5, 9/: 

(1.10) 

gk (n) = & S LV”‘(~+*) (&) ) n .& I’;-1 dS, 

lEl=1 

&k (5) = P-‘%Fijkt%lr n = z/c/l 2 1 

(Ei is a vector on the surface of the unit sphere). We note that g,,(x) represents a "static" 
Green's tensor, i.e. Green's tensor of the operator ,Ctj when o = 0. 

When the solution is chosen in the form (1.7), the field u(z) satisfies the homogeneous 
wave equation Llxuk(z)= 0, the conditions (1.6) and the radiation conditions. Outside 62 the 
potentials ZL, e and u are connected by the relations e=defu, u = Ce.At the points of the 
surface Q the functions er(z) and u,(z) (1.7) are discontinuous, and it will be shown 
below that the jumps in the values of these potentials satisfy the conditions (1.3) automatical 
for any b (I) and v (z) = 0. The remaining condition (1.4) enables us to determine the function 

b (2) uniquely. Next we shall derive an equation which must be satisfied by the function b(x). 

2. The integral equationofthe problem. First we shall study the limit values 
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of the potentials h(z), e,(z) and cl(z) as z+Q. In accordance with the expansion of Green's 
tensor in the series (1.101, the functions K(s) and M(z) can also be written in the form 
of the sum of the "static" and "dynamic" components 

K (2) = K”(s) + Ku (z), M (z) = M” (5) + Ma(s) (2.1) 

we note that the static parts of these functions K”(x) and M”(x) are homogeneous 
generalized functions of degree -3, whose regularization was given in /4/. The functions 

KU (z) and M* (5) are integrable on 0, since they have a singularity 15 1-l at zero. 
The potentials u,(z), sr(z) and a,(z) can also be written, by virute of (2-l), in the 

form of a sum of the static and dynamic components. Since the dynamic parts are continuous 
on B, it follows that only the static parts undergo a jump when passing through Q. 

Let us first consider the potential ~~(3). This integral represents the potential of the 
double layer of the dynamic theory of elasticity. Its limit values on D are given by the 
relations /12/ 

Ui*(Z)=~Vg(Z-2?)C?8(i)b(z’)dQ’fb(Z) (2.2) 
Q 

(the integral is regarded as the princpal Cauchy value). 
Let us now consider the potential al(z). It can be shown that the vector nj(z)z)au'(z) is 

continuous on passing through the surface 8, and its value on Q is obtained from the following 
regularization /13/: 

- nj (5) uij’ (5) = S Tij(.t, 2) bj (5’) do = 
Q 

T,P (~~2) [bj (d) - bj (s)] dQ’ + rij (2) bj (2) + 

STij”(t,i)bj(s’)dQ’, XEQ 
Q 

T<j(Z,Z')= Tij"(Z,Z') + Tijm(t, t') 

Tij"(Z,Z')= - TZ~(Z)Mtj~(Z -Z')nl(Z'), TijO(zt -?)= 

- nk (5) M$jc (5 - 5’) n,(i) 

where r,,(z) is the contour integral along the boundary of 62, whose explicit form was given 
in /13/. 

From relation (2.2) and the continuity of the vector n(z)cr,(z)on~itfollows that when 
Vi = 0 , conditions (1.3) for u(z) and a(r) in the form (1.7) are satisfied automatically 
and conditions (1.4) together with (1.5) lead to the following expression for the unknown 
function b(z): 

& nj (I) C;jktnl(z) bk (5) + 

% 

Tik (57.2’) bk (2) dQ’ = nk (5) aik’ (2) (2.4) 

in which the integral with the kernel Tik(x,L) should be regarded as the right-hand side of 
(2.3). Finding b(z) from the above expression and substituting the result into (1.7), we 
obtain the solution of the,problem in question. In the case of thin ellipsoidal inclusions 
and wavelengths appreciably exceeding the maximum dimensions of the inclusion, the problem 
can be solved by quadratures. We shall consider this case in more detail. 

3. Scattering of long waves by a thin ellipsoidal defect. Let Uh<i where 
h is the wavelength of the incident wave. Since zo N x/h, it follows that in solving the 
integral Eq.(2.4) we can restrict ourselves to the first terms of the expansion of the dynamic 
Green's tensor in the series (1.10) in powers of oz. Moreover, we will neglect, in the real 
part of the Green's tensor, terms of the order of (0~)~ and higher as compared with the static 
part g,(z), and in the imaginary part we shall retaintermsoftheorderofup toandincluding 
(o@ . This will enable us to determine correctly the terms of the real and imaginary parts 
of the field scattered by the inhomogeneity /5/ that are principal in o. The expression 
for the dynamic Green's tensor, with the accuracy up to the terms shown, takes the form 

gik (2) = &?ik” (z) + iogik 1 - ioJ2giks (n) (3.1) 

while Eq.(2.4) becomes 

&k (5) bk (5) + S IT4 ( $1 z, (3.2) 
Q 

I’) - iosT; (5, I’)] bk (2’) dS2’ = nk (2) u;k (Z) 

GrW = T” (I, z’) = n (2) CHCn (z’) 
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For a thin ellipsoidal inhomogeneity the surface 52 is an ellipse with semi-axes =,,a,, 
and the function h(z) has the following form inthe coordinate system whose axes coincide with 
the principal axes of the ellipsoid: 

(3.3) 

For sufficiently long wavelengths the external field ui"(X) in the region 62 can be 
assumed linear 

@i" (X) =I U*O + Uij(lzj (2 E 8) (3.4) 
Thenthe deformation tensor so and stress tensor oD are constant for sG8. moreover, 

in the case of a flat region the vector n, and hence the tensor TO, is also independent of X. 
As we know /14/, in the case of an elliptical region Q an operator with the kernel T"(.z,x') 
transforms the function z(X) into a constant. Therefore we can seek a solution of (3.2) in 
the form 

bi (2) = b,Z (x) (3.5) 

substituting this expression into (3.2) and restricting ourselves to terms of the order 

of US. we find the constant vector b 

b = 6” + idb@, b” = s Am”, A zz .$+- (+ r&Y* + To)-’ 

T”=~T”(x)[z(x)-~]~S~, b~=~vATaAnd’, v= $- xalJ 

Here the integral T is computed over the whole plane X+,X%, and the function X(X) is 
continued to zero outside the region St /13/. 

In accordance with formulas (1.71, the displacement fields u(X) and e(X) outside the 
thin ellipsoidal defect are given, in the long wave approximation, by the expressions 

u(X)= zP(X) - 1 Vg(x - z')A(ab ~2)2(51,a~, UZ)E*(~‘)~~' (3.5) 
n 

E(X)==EO(X) + pqs - 2’) A (al, us) 2 (2, a,, as) 8” (x’) dS1’ 
P 

A (a,, 6x2) ZE A0 + io%e, A” = CnAnC 

A” = vAOHAQ, 2 (5, al, as) = $2 (x) 

We note that the case C' = 0 corresponds to a thin cavity (a crack) and in the case of an 
inclusion composed of a viscoelastic material, c' is a tensor with complex components. 

4. Wave propagation in a medium with a random set of thin ellipsoidal 
defects. Let us consider an unbounded medium containing a spatially homogeneous random set 
of ellipsoidal defects. Let a,(x) be a delta function concentrated on the middle surface C& 
of the k-th defect. We shall denote the delta function concentrated on the set B = ; i>k 

of these regions by Q(x). In the case of harmonic oscillations, the amplitude of the deformation 
field E(X) in a medium with defects can be written in the same form as (1.7) 

r(z)=~"(~)+~X(~--~)Cn(s')b(~)52fb)d~' (4.1) 

where n(x) and b(r) are arbitrary vector functions identical with the vector of the normal 
qt;,(X) and the displacement jump vector b(k)(s) on the surface C&j (k = 1, 2, . . . ). 

Let US introduce, for any defect denoted by the number I:, a local outer field EN)* (X) 
containing this defect. The field sCs)* (I) is defined in the region Bh- and consists of the 
outer field e"(X), and the fields scattered by all remaining defects. Let us denote by E*(X) 
the deformation field defined in the region B and coinciding with q*,*(X) when XE Qh. As 
follows from (4.1), the field can be written in the form 

E*(t)==:E~(X)3_~K:(l:-X~)Cn(a)b(i)n(l;~')d~,rE~ (4.2) 

Here Q(X;i) denotes the delta function concentrated on the set 8, defined as follows: 

Q, =,$% for xEOt, 

We shall assume, in accordance with the effective field method /4/, that the field E*(X) 
is constant in each region &., but changes, generally speaking, from one region to another. 
Then from (3.7) it follows that the displacement field u(X) can be expressed in terms of 

s* (X) by the formula 



u (x) = u”(x) - 1 Vg (x - x’) A (x’) 2 (x’) Q (5’) E* (x’) ds’ 

and the field a* (5) satisfies the equation (I= 8) 
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(4.3) 

E* (x) = E"(x) + s K (x - i) II (x’) Z (x’) S2 (x; x’) e* (x’) dx’ (4.4) 

Here Z(r) and A(X) are functions of the form (3.7) on every surface 6&. 

Let us average Eq.(4.4) over the ensemble of samples of the random set of defects under 

the condition that XE Q. Assuming that the value of the random function E* (x) does not 

depend statistically on the properties and geometrical characteristics of the defect within 

which the point x lies, we obtain (<E*(z)/z>= E* (5)) 

E*(x)=c”(x)+SK(x--)Y(x,x’)(e*(x’)Ix’,x)dx’ 

IX* (x) = <&* (x) I x), Y (x, x’) = (A (x’) 2 (x’) B (x; x’)) 

(4.5) 

Here the symbol (.Ix,z',... > denotes the averaging operation provided that X,X',.. . E 

51. To obtain the closed equation for E*(x) we use the "quasicrystalline" approximation /15/ 

<e* (x) I z’, x) = <E* (x) 1 x> = E* (x) (4.6) 

The physical meaning of this approximation was discussed in /4, 15/, and Eq.(4.5) takes 

the form 

E* (5) = P(x) + s K (x - x’) Y (I, x’) E* (2) dx’ (4.7) 

In the case of a homogeneous random set of defects, the function Y(x,x') depends only 

on the difference between the arguments. Eq.(4.7) becomes here an equation in convolutions, 

and its solution in the k-representation has the form 

E* (k) = (I - Ko (k))-lE” (k), I = (Iijkl) = Gi(kSl)~ (4.8) 

Here K*(k) is the Fourier transform of the product K (x) Y (x). The Fourier transforms 

of the functions use the same notation, with the argument changed from to x to k. 
Let us now average Eq.(4.3) over the ensemble of samples of the random set of defects. 

Passing now to the k-representation and using (4.8), we express u"(k) by the Fourier transform 

of the mean displacement field Ui (k) = <ui (k)) 

Ui” (k) = ut (k) + kjgi, (k) &rsbnn. (k) kmun (k) (4.9) 

II(~) = (I + Ko (k))-‘, Ka,(k)=SK(x)cP(x)exp(-ik.x)dx 

d, (x - 2) = <A (zf) 2 (2) (Q (x’) - 51 (x; x’))> ' 

A = <A (r) 2 (r) Q (x)> 
We shall assume that the random functions in question are ergodic and that the orientation 

of the inclusions, their size and the position of their centres within the space are random, 

statistically independent quantities. Then we have 

0 (4 = <’ A (al,4 f (a,, ~2, xl), A =<$i!al, ad> 
f(al,az,x)=l-~~im_~SZ(x-xi)~(x’;x-xr’)dz’ 

Y 

(4.10) 

where vO is the mean volume per defect and the value of the averages on the right-hand sides 

of these formulas is determined by the distribution of the random semi-axes of the defects 
and their random orientations. 

We note that f (a,, a2, x) is a smooth function tending rapidly to zero outside the region 

with the linear dimension r of the order of the mean distance between the centres of the 
inhomogeneities. For sufficiently long waves (1 k.s 101 when 1 z 1 <r) we can assume that 

exp (--ik.x) z 1 in the integrand of (4.9). Here the integral Ka has a constant value and 
the tensor n takes the form 

n = II0 [Z - ios (PAO + JZZA”) IT], IT = (I f PA”)-’ (4.11) 

A0 = <$A%, sz)>, Am=<:+,, Q)> 

P=SK”WfWx, J=SfWx, fW=f@,a,,az) 

Let us pass in (4.9) to the z-representation and apply to both sides of the expression 
obtained the operator Lik defined in (1.8). Taking into account the equation Lik*Uh(x) = 0, 
we find that the mean displacement field in the medium with defects satisfies the equation 
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L:& (x) = 0, LTti = V&ZfjklVl + PD’uaS,, (4.12) 
Here Ctk, is the tensor of effective dynamic elastic moduli given by the relations 

C*=C' - io3Co, C‘ = c - c”, C” = <$ C” (al, n,,> (4.13) 

C” (a,, az) = A0 (aI, (12) no, 

Co b <-$ c” (aI, uz) HC” (al, a,)> - JC”HC 

Thus the mean wave field in a medium with defects satisfies an equation which is formally 

identical with the equation of motion of a homogeneous medium of density p and to the tensor 

of elastic moduli C*. Since C* is a complex quantity, it follows that elastic waves decay 

in such a medium. The decay is connected with the geometrical scattering at the inhomogeneities. 

we shall now construct the tensor C* for particular stochastic models of the set of inclusions 

in an isotropic medium. 

5. A random set of thin defects in an isotropic medium. Let us assume that 

the materials of the basic medium and of the inclusions are isotropic, with Lame coefficients 

A7 p and h',p' respectively. In this case expression (3.6) for the tensor A takes the form 

1 i ij = A,eilejl + A2e,Iej2 + Aaninj 

Al=+(F + T;)-f AI+% + &“)-l, 

A,=%(_ + T,“)y 

(5.1) 

T,” = 2nlll;y v) [Cl + v (cz - w 

TzO= &qr_ v) [c1+ v (CI - WI 
wwl 

TsO = 2a1' (1 -V) ’ cl=-, c2=c1-~(E(m)-w4) E Cm) 

ca = 3c, - ca, m = 1 - (a,/~,)~ (a, > as) 

Here ei, e2 are unit vectors of the principal axes of the ellipse whose orientation is 

determined by the normal n, K(m) and E(m) are total elliptic integrals of first and second 

kind respectively. 

The tensor Hiikl in this case becomes isotropic 

Hijkl = HlEtkl + HzE?jrr, E&l = b$kl, E2 =I - + E’ (5.2) 

Hi=d H = 3+2q5 
36~~~~ ’ ’ 6onP9 

VT = ?I- 
P’ 

where VT, VL are the rates of propgation of the transverse and longitudinal waves in the medium, 

and v is Poisson's ratio of this medium. 

Let the centres of defects form a statistically homogeneous and isotropic random field, 

and let their distribution over the orientations be uniform. We shall assume, in addition, 

that a spherical neighbourhood of each crack exists where the probability of finding the centres 

of other cracks within this sphere is low (a model with a constraint imposed on the intersection 

of cracks /S/). Then the function f(r) is spherically symmetrical and the integral P in (4.11) 

has the form 

P = P,E’ + P,EZ, P, = $/(9p), P, = (3 + 2q2)l(15p) (5.3) 

Substituting formulas (5.1)-(5.4) into (4.13), we obtain the following expression for the 

effective dynamic elastic moduli of the medium with inclusions: 

C* = K*E’ + 2p*E2 (5.4) 

Here 

(5.5) 
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Thus the inhomogeneous medium is macroisotropic and the wave Eq.(4.12) separates, in the 

k-representation, into two independent equations for the longitudinal and transverse waves /5/. 

The dispersion relations corresponding to each of these waves have the form 

k%* - pd = 0, k2p* - pw’ = 0 
i&xx, 

This yields the following expressions for the wave numbers: 

k = J$ + iyr. (m), kT = 5 + iyT (0); 

Here VL.* and vT* are the rates of propagation of the longitudinal and transverse waves 

in a medium with defects, while yL and vT are the attenuation coefficients of the correspond- 

ing waves per unit length 

(5.6) 

We see from the above relations that the velocities v~* and vT* are independent of the 

frequency, i.e. there is no dispersion of the velocity within the approximation used. This 

results from the approximation (3.1) of the expression for the dynamic Green's tensor. The 

attenuation coefficients yL and YT in (5.6) are proportional to 04, therefore they 

characterise the Rayleigh wave dispersion in the inhomogeneous medium in question. 

If the concentration of the defects is low (u/vo((l), we can neglect the interaction 
between them (i.e. the effects of multiple scattering) and the formulas obtained become 

(5.7) 

Here the quantities h,(q) and kl (rl) are given by the formulas (5.5) in which we must 

put rI,=rI,=l. 
In the case of thin circular cavities (h' = p' = 0), the formulas become identical with 

those obtained in /11/ by another method. 

We note that in the case of cavities filled with a viscous fluid the wave attenuation is 
caused not only by geometrical scattering, but also by the absorption properties of the fluid. 

Here the attenuation coefficients acquire additional terms which are proportional, at low 
frequencies, to o2 and hence represent the principal terms of the expansion of the attenuation 
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coefficients in series in 0. 

In conclusion we shall consider the case when all the defects have the same orientation. 
We shall restrict ourselves, for simplicity, to the case of thin circular cavities (cracks). 
We shall assume that the cracks form a random Poisson field, i.e. the positions of their centres 
are statistically independent and the centres themselves are distributed uniformly within the 

space /8/. Here the tensor C* has a transversally isotropic symmetry, and its important 
components in the basis of the coordinate axes z1z2zQ with the axis Q, perpendicular to the 
planes of the cracks, have the form 

ct,, = C&z = h +Zp - + +(I- Zqa)a- ias+ (I- 27ja)Y?10 

c;r,, = cz,r - *CL, C&3 = a+ $I - +"p - ios e &O 

c* nas=~~~,S=L-~~ap(l-Zq~)-iw3~(1-2rjz)C,~ 

CT*12 = P, c:,,, = C&S, = p (i-++io3~c10 

a=n-2 
[ 
nrla(i-Yz)+*]-l, 8=[+(3-zna)++]-l 

L' 0 = WW@(rl) CrWQ(rl) 
1 WrS 7 Go = fq”g. 

Let the wave normal be parallel to the axis of symmetry zQ of the material. Then from 
the dispersion relation 

det (k&& - poQ+) = o (5.8) 

it follows that the longitudinal and transverse waves can propagate in this direction at 

velocitres Vet* and 93. respectively 

u*a _ ra-$(b*2y.-+), +$+ $p) 

and the attenuation coefficients yL3 and yTS are 

1 <U9 0 

( ) 

4 v2, 
yL3 - 2s U0 ---7 

"L.3 
T WMl) 

1 <v=> 0 4 v*,, 
YTS- 2n ~0 ---7 

( > VT3 

7 Wl(rl) 

Let us now assume that the direction of the wave normal is perpendicular to the z6 axis. 

From (5.8) it follows thatinthis case a longitudinal wave may propagate in any direction 

perpendicular to the axis of symmetry at the velocity 

(I$,)~ = $ [h +2p - %.,,(I- 297a] 

with the attenuation coefficient 

as well as two transverse waves, one of which is identical to one discussed above, and the 

other of which propagates through the medium at a velocity uT1*= I+= l/q and does not decay. 

The domain of applicability of the expressions for the averaged elastic characteristics 
of the microinhomogeneous media obtained by the effective field method has been discussed in 

a number of papers referred to in /4/. The formulas for the effective elastic moduli of a 
medium with cracks were discussed in /8, 16/ where they were compared with the experimental 
data and the exact solutions. In the case of the plane problem the method given good results 

when the parameter non@) (a is the half-length of the crack and n0 is the numerical concen - 

tration of thecracks) does not exceed 1.5-2.0. In the three-dimensional case the same procedure 

was carried out in /7/. Good agreement with experimental data was obtained for values of the 
parameter tv)/v, of up to 0.66. 

Note that the attenuation coefficients are much more sensitive to the details of the 

spatial distribution of the cracks, than the wave velocity. Indeed, the expressions for yr. 

and I+ in formulas (5.5) and (5.6) contain the integral J of the correlation function f (4 
(4.10). As was shown in /5. lo/, the quantity J depends essentially on the spatial distribution 

of the defects, and a coarse approximation of the function f(z) yields negative coefficients 

of attenuation even when the concentration of the defects is insignificant. In the case of 

a low concentration of defects, when the form of the function f(s) is unimportant, the 

expressions for the attenuation coefficients are identical with the exact expressions obtained 
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in /g-11/. 
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